Boundary behavior of the Kobayashi-Royden metric in smooth pseudoconvex domains
نویسندگان
چکیده
منابع مشابه
On the Kobayashi-Royden metric for ellipsoids
The Kobayashi indicatrix (infinitesimal unit ball) of a domain in IE n is known to be a biholomorphic invariant. In particular, if a domain is biholomorphic to a ball, then the indicatrix is the ball. Until the recent deep results of Lempert [4], it was not known to what extent the indicatrix characterizes the domain. Sibony had shown earlier that the indicatrix of any pseudoconvex circular dom...
متن کاملEstimates of the Kobayashi-royden Metric in Almost Complex Manifolds
We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold (M, J) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in (M, J).
متن کاملBoundary Behavior of the Bergman Kernel Function on Some Pseudoconvex Domains in C "
Let il be a bounded pseudoconvex domain in C" with smooth denning function r and let zo 6 bCl be a point of finite type. We also assume that the Levi form ddr(z) of bil has (n — 2)-positive eigenvalues at z0 . Then we get a quantity which bounds from above and below the Bergman kernel function in a small constant and large constant sense.
متن کاملComparison between the Kobayashi and Carathéodory Distances on Strongly Pseudoconvex Bounded Domains in C"
In this paper we prove that the ratio between the Carathéodory distance and the Kobayashi distance in a strongly pseudoconvex bounded domain in C" is arbitrarily close to 1 whenever at least one of the points is sufficiently near the boundary.
متن کاملOn isometries of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains
Let 1 and 2 be strongly pseudoconvex domains in Cn and f : 1 → 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C1 map to ̄1. We then prove that f |∂ 1 : ∂ 1 → ∂ 2 is a CR or anti-CR diffeomorphism. It follows that 1 and 2 must be biholomorphic or anti-biholomorphic. Mathematics Subject Classification (2000): 32F45 (primary); 32Q45 (secondary).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2011
ISSN: 0026-2285
DOI: 10.1307/mmj/1310667982